
Drupal @ scale @ Dropsolid
Tales of building a Drupal-centric platform

Drupal Day Portugal 2024

manuel.gomes@dropsolid.com
https://manuelgomes.me

mailto:manuel.gomes@dropsolid.com


Dramatis personae

Manuel Gomes helps people and 

systems work better together.

● Has been a techie since the 90s

● Tells dad jokes (on purpose?)

● Product engineer at…

Dropsolid aims to make the best 

digital experiences accessible to everyone. 

Driven by an open culture and with a 
passion for open source, we share our 
knowledge, our code, and our talent with 
our clients and communities. 



DXP: Digital eXperience Platform
CONTENT 

MANAGEMENT

MARKETING 
AUTOMATION

CUSTOMER DATA 
PLATFORM

 & PERSONALIZATION

Build, manage, deploy, and 

continually optimize digital 

experiences for all users across 

all channels, such as websites, 

emails, mobile apps, chat, etc.



Dropsolid Experience Cloud

● All Open Source

● Complete data sovereignty

● Security (ISO27001) and 

Privacy (GDPR) built-in

● Community Native



This is (mostly) a tech talk. From a weird angle

Stories we tell, and the language we use to tell them.

Nouns, verbs, adjectives, grammar, and semantics.

How language maps mind. And mind maps systems.

Tools that embody our lexicon well - at certain points of scale.



Our story starts with Dropsolid

~700 projects ~1500 environments ~200 servers
(and that’s just production)

… you don’t want to manage that manually

Awesome Drupal-centric company founded 11 years ago. It grew.



So we built a platform



It’s been quite a journey (and it’s far from over)

I suppose it is tempting, if the only tool you have is a 

hammer, to treat everything as if it were a nail.

– Abraham Maslow

So obviously… we used Drupal to build it!



Domain modelling

Nouns Verbs



Nouns the Drupal Way

custom entities for nouns: projects, environments, servers, 

memberships, organisations, users, CDP, …

ACLs for memberships: Gitlab, OAuth2 Proxy, others

…

and state… but more on that later



What about verbs?

We did everything in… 

… but more on that later



Putting it all together`



It made sense.

It worked pretty well.

until…



Drupal is not an 
application 
framework

Awesome CMS, but… not a high 
concurrency application building 
framework

High revision overhead!
Bad blob handling!

…lead to deadlocks

🔥



We defended with 
smarter queueing

Celery on top of RabbitMQ

Retries with smart backoff
Reliable interim state store

at-least-once 
delivery

Semantics!



While Ansible takes 
care of most 
platform verbs

Which is great!

… mostly… 



So let’s talk about 

Brilliant at “its thing”:

Creating, provisioning, configuring servers

Broad Ecosystem

Flexible, extensible

… perhaps a little too much?



Some more Ansible

Great at (re)writing configuration files

creating, starting, stopping, restarting services

BUT

It has no notion of its own concurrency

It doesn’t really know “rollback”

Atomic writes are… as good as you make them



Too much Ansible!

It is not a programming language

It is not an application framework

It can run applications made in frameworks of 

programming languages

But boundaries and separation of 
concerns become extra hard



That’s a lot of orchestration!



It’s very hard to keep track of it all

State machines to the rescue!

Deterministic success/failure

If something crashes, you know exactly what 
and where

You can resume a workflow

Enables atomic “revert” options

Grammar?!



We have nouns, verbs, semantics, and grammar

With them, we can build meaningful sentences with which we articulate value

They should be



Maybe this rings a few bells…

As a <persona> I want to <action> so that <outcome>

Behaviour Driven Design scenarios, like in behat

Domain Driven Design’s ubiquitous language

… coincidence?



Tending your abstractions for fun sanity and profit

We’ve talked about some unusual stuff for a tech conference

● Vocabulary

● Semantics

● Grammar

● Value narratives



Why are they relevant?

Alignment and Decoupling.

Good abstractions, good sentences, allow us to maintain a 

consistent narrative of our value delivery to our customers, while 

swapping out implementations and supporting infrastructure in 

whatever way necessary.



Everything breaks at a scale

As a general rule, the greater the scale, the greater the necessary 

level of abstraction.

Many abstractions get leakier as we scale up.

… but we shouldn’t get ahead of common sense for our scale point

How you start is often not as you finish. And that’s OK



One simple trick (product managers love it) !

Corollaries:

● A good platform makes writing frequent customer sentences easy

● If what you’re writing is both necessary and customer-nonsensical, you’re writing 

plumbing, not platform. “drivers”, not “userland”.

 

If your “platform sentence” sounds like something your 

customers say, you might be on the right track



Manuel, can we get to the tech, please?

Ok, then, let’s talk about Kubernetes

And let’s talk about Nouns

Most nouns would do well… as 

Custom Resource Definitions…

… and we can let the Kubernetes API 

take care of the CRUD bits - those are 

some of the verbs



But we have far more complex sentences
Let’s look at a simplified version of 

Clone Environment

Not shown: testing, staging, QA, DQS, 
demo, ad infinitum



Maybe we can learn from past experience

Remember the whole rant “Ansible is 
not a programming language or an 
application framework”?

Perhaps it’s time to admit to ourselves 
that we do need an application to 
implement our grammar!



Kubernetes gives us operators

Domain-specific controllers that 

extend the Kubernetes API to manage 
and automate tasks based on the 

specific needs of the software they 

manage. They encapsulate 
operational knowledge into software 

that can be shared and reused.Di
ff

Observe

Act



You can build them with

And unavoidably…



Or maybe skip the whole Kubernetes silliness…

and go full serverless!



It won’t matter
… as long as we’re speaking the

right language!

happy ducky for scale



Honorable mentions in tooling

Logging Backups (done right!)

Alloy: OpenTelemetry collector

Loki: log database backed by object store

Grafana: Front end for (embeddable!) view 
over loki logs and other Alloy entities

Restic

● Flexible
● Lightweight
● Simple



Restic is awesomely simple

● Establish a repo on: disk, NFS, MinIO, S3, GCS, Ceph…

● Define the source, plus any exclusions
● First run compresses and backs up everything

● Ensuing runs detect differences, compress and store the delta (versioned!)

● Restore snapshots fully, or paths within them, or mount them as FUSE file 

systems(!)

● Enforce retention in a cron-like syntax

● Take an early day - it Just Works!



Grafana stack? Not so simple
But worth it!

● Incredibly flexible and 
feature-complete

● Plays well with others, 
specifically Prometheus 
(metrics) - and other 
OpenTelemetry “citizens”

● Embeddable dashboards make 
it a full citizen of our product 
offering, not just ops stack.



Thank you! Questions?

hopefully the right language..


